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Abstract. Exotic plants often face different conditions from those experienced where
they are native. The general issue of how exotics respond to unfamiliar environments within
their new range is not well understood. Phenotypic plasticity has historically been seen as
the primary mechanism enabling exotics to colonize large, environmentally diverse areas.
However, new work indicates that exotics can evolve quickly, suggesting that contemporary
evolution may be more important in invasion ecology than previously appreciated. To
determine the influence of contemporary evolution, phenotypic plasticity, and founder ef-
fects in affecting phenotypic variation among introduced plants, we compared the size,
fecundity, and leaf area of St. John’s wort (Hypericum perforatum) collected from native
European and introduced western and central North American populations in common
gardens in Washington, California, Spain, and Sweden. We also determined genetic rela-
tionships among these plants by examining variation in amplified fragment length poly-
morphism (AFLP) markers.

There was substantial genetic variation among introduced populations and evidence for
multiple introductions of H. perforatum into North America. Across common gardens in-
troduced plants were neither universally larger nor more fecund than natives. However,
within common gardens, both introduced and native populations exhibited significant lat-
itudinally based clines in size and fecundity. Clines among introduced populations broadly
converged with those among native populations. Introduced and native plants originating
from northern latitudes generally outperformed those originating from southern latitudes
when grown in northern latitude gardens of Washington and Sweden. Conversely, plants
from southern latitudes performed best in southern gardens in Spain and California. Clinal
patterns in leaf area, however, did not change between gardens; European and central North
American plants from northern latitudes had larger leaves than plants from southern latitudes
within these regions in both Washington and California, the two gardens where this trait
was measured. Introduced plants did not always occur at similar latitudes as their most
closely related native progenitor, indicating that pre-adaptation (i.e., climate matching) is
unlikely to be the sole explanation for clinal patterns among introduced populations. Instead,
results suggest that introduced plants are evolving adaptations to broad-scale environmental
conditions in their introduced range.

Key words: amplified fragment length polymorphisms (AFLPs); EICA hypothesis; founder effects;
Hypericum perforatum; introduced plants; latitudinal clines; molecular genetic variation; population
differentiation; rapid evolution; St. John’s wort.

INTRODUCTION

Exotic species can often be larger or more fecund in
their introduced range than in their native range (Elton
1958, Crawley 1987, Fowler et al. 1996, Rees and
Paynter 1997, Buckley et al. 2003, Grosholz and Ruiz
2003). Why this may be so has remained elusive, de-
spite growing interest in this topic. Phenotypic plas-
ticity has traditionally been seen as a key to coloni-
zation success and a likely explanation for why indi-
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viduals appear so robust in recipient communities
(Marshall and Jain 1968, Rice and Mack 1991, Sultan
and Bazzaz 1993, Williams et al. 1995, Kaufman and
Smouse 2001, Novak and Mack 2001, Sexton et al.
2002, Parker et al. 2003). Species introduced to new
regions may face a more benign environment from
whence they came, either because they escape from
their native competitors or specialist herbivores and
pathogens, or because they occur in locations that pos-
sess physical conditions that are more suitable for pro-
longed growth (Elton 1958, Gillett 1962, Crawley
1987). Introduced plants may respond flexibly to a
more benign biotic or physical environment by growing
more vigorously or devoting more resources to repro-
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duction. Understanding the magnitude of these changes
in phenotype is important because size and fecundity
can greatly influence interactions between natives and
exotics and thereby critically determine colonization
success.

Although phenotypic plasticity can be an important
mechanism allowing exotics to succeed in recipient
communities, so too may evolution. Early classic stud-
ies on plants highlighted the fact that exotics often have
substantial evolutionary potential (Baker and Stebbins
1965, Baker 1974, Jain and Martins 1979, Brown and
Marshall 1981). Yet, the idea that evolution could be
an important force in the ecology of invasions has been
mostly neglected in the ecological literature on exotics.
Only recently have ecologists recognized that species
introduced to new environments can evolve rapidly
(Losos et al. 1997, Reznick et al. 1997, Weber and
Schmid 1998, Yom-Tov et al. 1999, Huey et al. 2000,
Bone and Farres 2001, Lee 2002) and that rapid ge-
netically based adaptation to novel environments might
be more important in the ecology of invasions than
previously thought.

Two distinct but not mutually exclusive classes of
selection pressures might drive contemporary evolu-
tion within exotic plant populations. First, liberation
of exotic plants from their natural enemies might lead
to the evolution of increased plant size or fecundity.
Blossey and Nötzold (1995) proposed that introduced
plants that are no longer attacked by specialist enemies
should lose costly herbivore defense and re-allocate
resources previously spent on defense to traits that en-
hance competitive ability, such as increased size or
fecundity. The evolution of increased competitive abil-
ity (EICA) hypothesis predicts that introduced plants
should universally be larger or more fecund than their
native conspecifics; if true, it implies that rapid evo-
lutionary change may play a key role in invasion suc-
cess.

Tests of the EICA hypothesis have been inconclu-
sive. Both Siemann and Rogers (2001) and Blossey and
Nötzold (1995) found introduced individuals were larg-
er or more fecund than native individuals of Chinese
tallow trees (Sapium sebiferum) and purple loosestrife
(Lythrum salicaria), respectively. Leger and Rice
(2003) found that introduced California poppies (Es-
chscholzia californica) from Chile were larger and
more fecund than native Californian conspecifics in
common gardens, but only in the absence of compe-
tition. On the other hand, Willis et al. (2000) grew four
species of plants collected from their native European
and introduced ranges in a common garden in Britain
and found no evidence that introduced plants had
evolved increased size. Thébold and Simberloff (2001)
similarly found no consistent evidence (based on data
in accounts of the flora of Europe and the United States)
that introduced genotypes were larger than their native
counterparts.

Second, geographic gradients in abiotic conditions
across the introduced range could impose divergent
selection and promote genetically based differentiation
among introduced populations. A classic manifestation
of this would be the evolution of geographic clines, as
is often found among native populations occurring
across altitudinal or elevational gradients (Turreson
1930, Clausen et al. 1940, Neuffer and Hurka 1986,
Lacey 1988, Galen et al. 1991, Winn and Gross 1993,
Jonas and Geber 1999). Yet, whether introduced plant
populations rapidly evolve clines in response to en-
vironmental conditions across their introduced range is
seldom studied (but see Neuffer 1990, Weber and
Schmid 1998, Neuffer and Hurka 1999). Furthermore,
whether clines in traits among introduced plant pop-
ulations broadly converge on those expressed among
native conspecifics occurring over similar latitudinal or
elevation gradients is unknown. There is certainly pre-
cedence for such clinal convergence. Introduced pop-
ulations of Drosophila subobscura have rapidly
evolved clinal variation in wing shape that converges
on that found for native fruit flies occurring across a
similar latitudinal gradient (Huey et al. 2000).

Here, by means of common garden experiments in
the native and introduced range and genetic analyses
of plants, we explore whether the widespread exotic
plant, St. John’s wort (Hypericum perforatum), has un-
dergone contemporary adaptive evolution (sensu
Stockwell et al. 2003) in its introduced range. Specif-
ically, we ask: (1) whether introduced St. John’s wort
populations have evolved latitudinally based clines in
size, fecundity, leaf area, or survival, as might be ex-
pected if abiotic conditions drive adaptation, (2) wheth-
er native populations of St. John’s wort also exhibit
clinal variation in traits in common gardens, and if so,
how clines in the native and introduced range compare,
and (3) whether introduced H. perforatum has evolved
larger size or fecundity in response to an enemy-free
environment, as predicted by the EICA hypothesis. Be-
cause of St. John’s wort’s history of introduction,
spread, and subsequent control, our study provides a
unique test of the EICA hypothesis. In western North
America, St. John’s wort has been exposed to biocon-
trol for over 50 years, whereas introduced plants in
central North America have either never been exposed
to biocontrol or in a few localities have had a much
more recent exposure to biocontrol (Julien and Griffiths
1998). Although many factors besides exposure to bio-
control (for example, climate) potentially contribute
toward selecting for particular traits in western and
central North American populations, if the EICA hy-
pothesis is correct, plants liberated from specialist her-
bivores that reside in central North America should
tend to be larger or more fecund than plants from Eu-
ropean populations when grown in common gardens.
Additionally, EICA predicts that plants from western
North American populations should be intermediary in
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size between central North American and European
plants as a result of their biocontrol history.

While comparison of traits in common gardens pro-
vides insight into whether there has been genetically
based differentiation among introduced populations,
evidence for clinal differentiation does not, in itself,
necessarily imply contemporary evolution. Multiple in-
troductions from a genetically diverse source pool
could produce a good match between the set of con-
ditions a genotype is adapted to and the conditions it
experiences where introduced (Neuffer and Hurka
1999). If this is the case, no evolution has occurred;
rather, introduced genotypes only persist in areas where
they are pre-adapted. Alternatively, clinal patterns in
traits within common gardens could result from adap-
tive evolution within the introduced range. This could
occur either as a result of adaptive radiation from a
limited number of founding genotypes, or from mul-
tiple introductions that provide sufficient genetic var-
iability on which selection can act. To differentiate be-
tween these alternatives, we used amplified fragment
length polymorphism (AFLP) markers to examine ge-
netic relationships between native and introduced
plants, and thereby infer the invasion history of St.
John’s wort.

METHODS

St. John’s wort natural history

St. John’s wort is a short-lived rhizomatous perennial
native to Europe, North Africa, and Asia. These plants
inhabit old fields, overgrazed, or otherwise disturbed
grasslands, forest clearings, gravel river banks, and
road sides. Individuals grow as prostrate mats in winter,
then bolt, flower, and set seed in summer. After seed
set, plants senesce aboveground until winter rains ini-
tiate new procumbent growth.

As an introduced weed, St. John’s wort is widely
distributed. It has been introduced into Australia, New
Zealand, South Africa, and North and South America.
In the United States, St. John’s wort was first found in
1793, in Lancaster, Pennsylvania. St. John’s wort was
found in some portions of the Midwest in the mid-
1800s (Sampson and Parker 1930, Voss 1985) and on
the West Coast, in Oregon, between 1840 and 1850.
By the early 1900s, St. John’s wort was found in Cal-
ifornia (Campbell and Delfosse 1984, Voss 1985). Bi-
ological control of St. John’s wort in western North
America was first initiated in 1945, with the introduc-
tion of a chrysomelid beetle, Chrysolina quadrigemina
(Huffaker and Holloway 1949, Holloway and Huffaker
1951). Beetles established and killed many plants;
within five years of introduction in California, H. per-
foratum was reduced to ,1% of its former abundance
(Holloway 1957). Whether biocontrol in the West is
currently as efficacious as it was initially is not well
documented. In central North America, St. John’s wort
never reached the densities observed in the West, likely

because cropland habitat is not ideal for St. John’s wort.
Biocontrol introductions in eastern North America oc-
curred much later than in western North America (in
1969 vs. 1945); biocontrol beetles have only recently
spread to several eastern states and Minnesota (Harris
and Maw 1984, Fields et al. 1988, Hoebeke 1993, Ju-
lien and Griffiths 1998). Thus, throughout central North
America, St. John’s wort has either never been exposed
to biocontrol or plants have had a much more limited
history of herbivore exposure than have plants in west-
ern North America. Censuses of multiple introduced
populations indicate that in the absence of biocontrol
agents, St. John’s wort receives minimal herbivore
pressure by native generalists (J. L. Maron and M. Vilà,
unpublished data). Plants we out planted into common
gardens received little or no herbivore damage.

Seed collection

In late summer 1998 and 1999, we collected mature
seed capsules of H. perforatum from three distinct re-
gions: Europe, western North America, and central
North America (N.A.). We collected seeds from 18 na-
tive populations (17 in Europe plus one population in
Kyrgyzstan; for simplicity we collectively refer to all
18 populations as European), 18 introduced western
North American populations, and 14 introduced central
North American populations (see Appendix for addi-
tional information on seed source populations and col-
lection methods). Seed capsules were collected from
10–14 haphazardly chosen individuals per population,
except European populations 5, 10, 12, and 13 (see
Appendix for location of populations), where we col-
lected a pooled sample of capsules from .10 individ-
uals.

Common garden experiments

We established two large common gardens in Sno-
homish, Washington, USA, and at the Mas Badia Ex-
perimental Field Station (IRTA) near Girona, Spain, in
spring 2000. In 2001, we established two additional
smaller common gardens, on the Wantrup Preserve in
Pope Valley, California, USA, and near Sörby on the
island of Öland, Sweden (see Table 1 for information
on common garden sites, dates of transplant, number
of individuals, and populations used in each garden,
etc.) In each garden, individuals from each population
were maternal sibs of those planted in other gardens.
Since St. John’s wort produces upwards of 90% of its
seed apomictically, maternal sibs planted in all gardens
were likely clones (Robson 1968, Arnholdt-Schmitt
2000). To ensure that transplants were not overtopped
by surrounding grasses, we periodically mowed be-
tween plots and/or hand-clipped grasses immediately
surrounding experimental plants. St. John’s wort oc-
curred naturally near each garden site. Plot spacing and
the layout of plants among gardens differed due to
space and other logistical considerations. The com-
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TABLE 1. Comparison of the four common garden sites with respect to physical conditions and timing of plant propagation,
outplanting, and measurement.

Location Latitude

Mean annual
precipitation

(cm)

Mean daily
maximum

temperature (8C)

Mean daily
minimum

temperature (8C)

Dates plants
propagated in

greenhouse

Individuals
used per

population

Snohomish, Washington
Pope Valley, California
Sörby, Sweden
Girona, Spain

478529 N
388369 N
568509 N
428199 N

123
106

42
62

22.8
30.8
27.6
31.0

0.7
2.9

27.7
10.0

March 2000
January 2001
April 2001
March 2000

10
9
9

14

Note: Plants were propagated in greenhouses at the University of Washington (for Washington and California), the University
of Barcelona (for Spain), and the Swedish University of Agricultural Sciences (for Sweden).

petitive environment across gardens was roughly sim-
ilar.

Washington common garden.—We established 10
replicate, 8.5 3 12 m blocks composed of six 1.5 3
12 m plots separated by 2 m. Plants in three of these
plots were exposed to herbivory by Chrysolina quad-
rigemina as part of a separate experiment and not dis-
cussed here. One individual from each population with-
in a given region was randomly assigned to the same
plot within blocks. Thus, each plot within a block con-
tained plants from a different region. Across blocks,
plots contained a unique individual from each popu-
lation. Plots consisted of two rows of nine individuals
(spaced 1.5 m apart) from each of 18 populations. Since
we only collected seed from 14 central North American
populations, we added four randomly selected replicate
plants to each central North American plot to maintain
plant density at 18 in each plot. No data were collected
from these replicate plants.

In September 2000, 2001, and 2002, we estimated
plant fecundity: in 2000 by clipping and counting the
seed capsules on each plant (n), and in 2001 and 2002
by harvesting, drying, and weighing seed capsules
since plants had too many capsules to count individ-
ually. On a subset of plants in 2001 and 2002, we both
counted and weighed seed capsules to determine the
relationship between capsule mass (M ) and capsule
number (N ). We used these regressions (2001 regres-
sion, N 5 44.45M 2 3.71, R2 5 0.93, P , 0.0001, n
5 43; 2002 regression, N 5 43.5M 1 22.2, R2 5 0.97,
P , 0.0001, n 5 85) to convert capsule mass into
capsule number each year.

We censused all plants in July 2001 and 2002. We
estimated plant size by treating each plant as a cylinder
and calculating cylindrical volume (V). To do this, we
measured the width of each plant in perpendicular di-
rections (W1 and W2) and then measured the height of
the tallest stem (H ); thus, V 5 p[(W1 1 W2)/4]2 3 H.

In July 2002, we randomly chose one of two opposite
leaves at the sixth node on the tallest stem on each
plant and measured the length and maximum width of
this leaf on all plants. These leaves were similar in size
to those sampled at other nodes on the same plant (Pear-
son r 5 0.74). We calculated the relationship between
leaf length (L) 3 maximum width (W ) and leaf area

(LA) by measuring leaf length and width of green-
house-grown plants and then estimating their area by
using image analysis performed on a Macintosh com-
puter using public-domain NIH image program version
1.62 (developed at the U.S. National Institute of Health;
available online)7 to analyze digitally scanned images
of these leaves when dried and flattened. We then ap-
plied the equation LA 5 [(W 3 L) 3 0.785] 1 0.002
(R2 5 0.99, n 5 500) to field-measured leaves to con-
vert leaf size to leaf area.

California common garden.—We established nine
replicate blocks composed of six plots (three of which
were used for a separate experiment and not discussed
here). Plants from a given region were all assigned to
the same randomly chosen plot within blocks. Plots
consisted of two rows of six plants from the same re-
gion but from different populations within that region,
except for central North American plots that contained
two rows of five plants. Plants within plots were sep-
arated by 1 m, plots were separated from each other
by 1.5 m, and blocks were separated from each other
by 2 m.

In April 2002, we censused all plants and estimated
plant size, as described in Methods: Common garden
experiments, Washington common garden. We also
measured the length and width of one randomly chosen
leaf at the fourth node on the tallest stem of each plant.
We then converted leaf size to leaf area, as described
above. We censused all plants and estimated plant fe-
cundity in late July 2001. Only six plants produced
seed capsules, and these plants produced no more than
a few capsules each. In mid-July 2002, we again cen-
sused plants and estimated fecundity, as we did in
Washington in 2002.

Spain common garden.—We randomly assigned one
individual from each population within a region to one
of 14 4 3 4 m plots (42 plots total). Individuals within
plots were separated by 1 m, and plots were separated
by 2.5 m.

In September 2000, we censused all plants and es-
timated fecundity by counting seed capsules on plants.
In April 2001, after plants had been in the field for 11
months, we censused and measured all plants. At this

7 URL: ^http://rsb.info.nih.gov/nih-image/&
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TABLE 1. Extended.

Populations used per region

Europe

Western
North

America

Central
North

America
Field preparation
prior to transplant

Transplant
date

Dates plant
size measured

Dates fecundity
estimated

18
12
10
16

18
12

9
16

14
10

9
13

mowed and tilled
mowed and tilled
mowed
mowed and tilled

April 2000
March 2001
April 2001
June 2000

July 2001, 2002
April 2002
June 2002
April 2001

September 2000, 2001, 2002
July 2001, 2002
September 2002
September 2000, October 2001

time, most individuals had not yet bolted and grew as
prostrate mats that were roughly circular. We estimated
mat area (MA) by measuring the diameter of each mat
in two perpendicular directions (L1 and L2) and con-
verting these values to area (where MA 5 ((L1 1 L2/
4)2 3 p). Mat area prior to bolting is correlated to
plant size after bolting (Pearson r 5 0.65, P , 0.0001).
In late October 2001, we again censused all plants and
estimated fecundity by harvesting, drying, and weigh-
ing seed capsules. We converted capsule mass into cap-
sule number, as was done for plants grown in Wash-
ington in 2001.

Sweden common garden.—We established nine rep-
licate blocks composed of three plots, with each plot
containing plants from a single region. Regions were
randomly assigned to plots within blocks. Plants were
spaced 1.2 m apart within a plot, plots within blocks
were separated by 1.5 m, and blocks were separated
from each other by 3–4 m.

In mid-June 2002, we censused all plants and count-
ed the number of shoots on each individual. In mid-
September 2002, we harvested, dried, and weighed
seed capsules from each plant, as described in Methods:
Common garden experiments, Washington common
garden.

Analysis of common garden data

Within each garden, we determined whether there
was significant differentiation in plant size, fecundity,
or leaf area based on latitude of population origin. Lat-
itudinally based differentiation within a common gar-
den is classic evidence for a geographic cline, and sug-
gests that plants have adapted to the broad-scale en-
vironmental conditions experienced across their home
environment (i.e., Europe for native genotypes and
North America for introduced genotypes). After statis-
tically controlling for latitude, we explored whether
plant size or fecundity varied based on region of pop-
ulation origin, as predicted by the EICA hypothesis.
To make these comparisons, in the PROC GLM module
within SAS (2001) we performed an ANCOVA with
Type I sum of squares, using the following model: re-
sponse variable 5 block (except for Spain where plants
were not blocked in the field) 1 latitude of population
origin 1 region of population origin 1 latitude 3 re-
gion 1 population nested within region 1 error. Block

and population nested within region were random fac-
tors, region was a fixed factor, and latitude was a co-
variate. A significant population within region effect
indicates that there is population differentiation and
that this differentiation is not due to latitude of origin
(since variation among populations due to latitude is
removed before testing the population with region ef-
fect). We used Type I rather than Type III sum of
squares because most populations had unique latitudes
of origin (Table 1) and there were insufficient degrees
of freedom to simultaneously use latitude and popu-
lation nested with region within a Type III sum of
squares model. Response variables in these analyses
were plant volume (log-transformed to meet assump-
tions of the ANCOVA), fecundity (or cumulative fe-
cundity across two and three years for plants grown in
Spain and Washington, respectively), and leaf area. We
performed Bonferroni post hoc comparisons to exam-
ine pairwise differences between regions in mean size
or fecundity. To determine how mortality varied based
on latitude of population origin, we calculated mor-
tality within each population in a given garden and
regressed these population mortality values on latitude
of population origin. To examine clinal patterns among
introduced plants in isolation, we combined data from
western and central N.A. and performed Type I sum
of squares ANCOVAs on these data from each garden.
We tested for effects of block, latitude, and population,
with population and block as random factors and lat-
itude as a covariate.

Finally, we compared the total phenotypic variation
among European and western North American popu-
lations in each garden, respectively. If there had been
a large founder effect and a limited number of geno-
types introduced into North America, one might expect
phenotypic variation to be greatly reduced among in-
troduced plants compared to natives. To examine this,
we calculated the percentage of the total among-pop-
ulation phenotypic variance (based on adjusted popu-
lation means from the ANCOVA) that was accounted
for by native and introduced populations. This test re-
quires roughly balanced numbers of individuals and
populations from each region, since differences in sam-
ple size can bias variance estimates. In cases where the
number of populations sampled was unequal between
regions (fecundity in Sweden), we randomly chose an
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equal number of populations from each region. We ex-
cluded populations from central N.A. from this analysis
since the number of populations sampled was smaller
and therefore not comparable to those sampled in Eu-
rope and western N.A. We omitted data from Spain, as
high mortality in that garden made for an extremely
unbalanced design.

Genetic relations between native
and introduced plants

We used amplified fragment length polymorphisms
(AFLPs; Vos et al. 1995, Mueller and Wolfenbarger
1999) to determine genetic relationships between in-
dividuals and populations. We clipped leaves from
four randomly chosen individuals from each popu-
lation within the Washington common garden. We ex-
tracted total genomic DNA from either fresh, green
leaves or leaves that had been frozen using standard
procedures (Vos et al. 1995) to produce AFLPs with
the following modifications. We digested 400–500 ng
of DNA from each plant and ligated adaptors (MseI
and EcoRI) to the ends in a reaction mixture that con-
tained 5 mL 10 3 RL buffer (100 mmol/L Tris-Acetate
pH 7.6, 100 mmol/L Mg-Acetate, 500 mmol/L K-Ac-
etate, 50 mmol/L dithiothreitol), 50 pmol/L EcoRI
adapter, 50 pmol/L MseI adapter, 1 mmol/L 10 mmol/
L ATP, 1 unit of T4-DNA ligase, and water to a final
volume of 50 mL. Adapter sequences are the same as
those described by Xu et al. (2000). After digestion
and ligation, products were diluted 1:4 with water.
Digestion/ligation products were amplified with one
selective nucleotide using polymerase cahin reaction
(PCR) as described in Vos et al. (1995). In the second
round of PCR, products were amplified with primers
(EcoRI and MseI) labeled using LICOR IRD-800 or
LICOR IRD-700 dyes (LI-COR Biosciences, Lincoln,
Nebraska, USA). In total, 25 primer pairs were used.
Amplification products were visualized using gel elec-
trophoresis on a LI-COR Long ReadIR DNA sequenc-
er. Digital AFLP gel images were scored using AFLP-
Quantar scoring software (Keygene products B.V.,
Wageningen, The Netherlands) and also carefully
checked by eye to ensure Quantar scoring was ac-
curate. Prior to analysis, we eliminated one individual
from populations Spain 1, France 7, Czech 14, Ontario
10, and Michigan 14, because these plants had anom-
alously low numbers of AFLP fragments. It is likely
that methodological problems during sample prepa-
ration led to these anomalies.

Analysis of genetic data

We recorded AFLP band presence or absence for
each sample as a binary character. We then analyzed
this data matrix in two ways. First, using PAUP* 4.0
(Swofford 1998), we determined relationships among
H. perforatum individuals and populations using neigh-
bor-joining, a distance-based analysis. Estimates of
similarity were calculated using the index of Nei and

Li (1979). We also constructed trees based on parsi-
mony analyses, but these analyses produced qualita-
tively very similar trees that recovered the same well-
supported clades as those based on neighbor-joining.
We arbitrarily picked population 16 from England as
the out group because relationships are more easily vi-
sualized using rooted trees. Using other out groups yield-
ed qualitatively similar results. Bootstrap values (Fel-
senstein 1985) for the neighbor-joining tree were cal-
culated using 1000 replicate neighbor-joining searches.

Second, we used analysis of molecular variance
(AMOVA; ARLEQUIN software version 2.0, Schnei-
der et al. 2000) to determine how total neutral molec-
ular genetic variation was partitioned between regions
and among populations within regions. AMOVA cal-
culates pairwise squared Euclidean distances among
AFLP phenotypes, and from these estimates Fst, the
percentage of total molecular variation that is due to
differences among specified hierarchical groups (in our
case, between regions of population origin, among pop-
ulations within regions, and within populations). We
first used AMOVA to determine how genetic variation
was partitioned between regions and among popula-
tions within regions. We then asked, within a given
region, how the percent of total molecular genetic var-
iation was partitioned within and among populations.
For both of these analyses, we used only data from
European and western North American genotypes,
since an equal number of populations within these re-
gions were sampled.

RESULTS

Genetic relationships between native
and introduced plants

Together, 25 AFLP primer pairs generated 302 poly-
morphic markers across all samples analyzed. Among
195 individuals, we detected 195 unique AFLP phe-
notypes. When examined together, individuals from in-
troduced and native populations clustered in several
well-supported clades (Fig. 1). The fact that individuals
from the introduced range cluster in multiple clades
indicates that there have likely been repeated intro-
ductions of St. John’s wort into North America (Fig.
1). One well-supported clade contains individuals from
multiple populations collected in Spain, France, and
California, while other well-supported clades contain
individuals from populations originating from western
and central N.A., as well as individuals from Europe.
As was the case for European populations, plants from
the same North American populations usually clustered
together (see Fig. 1, exceptions: Wisconsin 2–1, Wis-
consin 2–3, Michigan 6–10, Ontario 10–5, California
2–4, California 9–7, Oregon 12–8, Oregon 14–14,
Oregon 18–10).

Analysis of molecular variance revealed that only
10.42% of the total molecular genetic variation among
European and western North American samples was
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accounted for by region of origin (i.e., Europe vs. west-
ern N.A.). The majority of molecular variation (65.6%)
was partitioned among populations within regions, with
the remaining molecular variation (23.91%) partitioned
within populations. For European samples in isolation,
65.67% of the variation in AFLP haplotypes was due
to differences in diversity among populations, whereas
34.33% of the molecular genetic variation was con-
tained within populations. For western North American
genotypes, 78.2% of the molecular genetic variation
was contained among populations, and 21.88% was
contained within populations. Thus, for both native and
introduced plants, greater genetic variability was pre-
served among vs. within populations.

Differences between native and introduced plants
in size and fecundity

There were significant differences in size between
native and introduced plants within Spain and Wash-
ington common gardens but not within California and
Sweden gardens (Table 2). In Spain, plants from Eu-
ropean populations were larger (84 650 cm3 6 23 498
[unadjusted mean volumes 6 1 SE]) than those from
either central (45 779 cm3 6 25 241) or western (47 139
cm3 6 22 752) North American populations (post hoc
comparison, P , 0.05). In Washington, the same was
true (191 322 cm3 6 40 352, 169 257 cm3 6 27 966,
and 122 199 cm3 6 26 979 for European, central and
western North American plants, respectively; post hoc
comparison, P , 0.05).

Cumulatively, western North American plants pro-
duced more seed capsules over three years (unadjusted
mean 5 2748 6 237) than did European (2368 6 266)
and central North American (2430 6 160) plants in
Washington (Table 3; post hoc comparison, P , 0.05).
In Sweden, western North American plants also pro-
duced more seed capsules (unadjusted mean 5 468 6
42) than did central North American (453 6 42) or
European (405 6 40) plants (post hoc comparison, P
, 0.05). However, in California, European plants pro-
duced more seed capsules (unadjusted mean 5 783 6
250) than did either central or western North American
individuals (unadjusted means 5 115 6 54 and 683 6
225 for central and western North American popula-
tions, respectively; post-hoc comparison, P , 0.05;
Table 3). In Spain, there was no significant difference
in fecundity based on region of origin (Table 3). Thus,
in contrast to the prediction of the EICA hypothesis,
introduced plants were neither consistently larger nor
more fecund than natives across all gardens.

Clinal variation

Plant size.—St. John’s wort from diverse native Eu-
ropean and introduced North American populations ex-
hibited significant latitudinally based clines in size in
California, Sweden, and Washington, and marginally
significant clines in size in Spain (Figs. 2 and 3, Table
2). In relatively northerly common gardens in Sweden

and Washington, plants from populations originating
at northern latitudes grew larger than plants from south-
ern latitudes (Fig. 2). In more southern latitude com-
mon gardens in California and Spain, the opposite pat-
tern prevailed; plants originating from southern lati-
tudes were larger than plants originating from northern
latitudes (Fig. 3). When introduced North American
plants were analyzed separately, there were significant
clinal patterns in size in common gardens in California
(F1,20 5 8.5, P , 0.008), Sweden (F1,22 5 10.1, P ,
0.005), and Washington (F1,30 5 16.4, P , 0.003) and
a marginally significant cline in Spain (F1,27 5 3.7, P
5 0.07).

Plant fecundity.—Both introduced and native plants
produced abundant seed capsules in their first summer
in Washington and Spain. In Sweden and California,
plants did not flower and set seed until their second
summer (with the exception of six individuals in Cal-
ifornia that each produced fewer than 10 seed cap-
sules). Among all populations, fecundity varied in a
strong clinal pattern in all common gardens except
Spain, where there was a marginally significant effect
of latitude on fecundity (Figs. 4 and 5, Table 3). As
was the case for size, plants from northern latitudes
outperformed plants from southern latitudes in northern
common gardens in Sweden and Washington (Fig. 4),
but performed less well than plants from southern lat-
itudes when grown in southern common gardens in
California and Spain (Fig. 5).

In Washington, clinal patterns in fecundity switched
dramatically between years. Mean cumulative fecun-
dity (across years one and two) among populations was
negatively related to latitude of population origin (Fig.
4). Plants from southern latitudes performed better than
those from northern latitudes despite the fact that the
Washington garden was at a more northerly latitude.
However, in their third year (2002), fecundity was high-
er for plants from northern latitudes than those from
southern sites (Fig. 4). This clinal shift coincided with
large differences between years in rainfall. The winter
of year two (2001) was unusually dry (mean cumulative
rainfall from January to May 5 38.7 cm) and signifi-
cantly drier than the 20-year rainfall average for this
period (57.4 cm [one-sample t test, t 5 7.4, P ,
0.0001]). This created conditions more similar to what
typically would be found at a more southerly locale.
Since seed capsule production in year two made up the
lion’s share of the cumulative two-year total, the en-
vironmental conditions during year two had a predom-
inant impact on cumulative fecundity in the first two
years. However, in year three (2002), cumulative rain-
fall during January–May was 58.5 cm, not significantly
different from the long-term average (one-sample t test,
t 5 0.05, P 5 0.95).

Introduced populations, when analyzed alone, ex-
hibited significant clines in fecundity in California
(F1,20 5 11.3, P , 0.003), Sweden (F1,17 5 11.3, P ,
0.003), and Washington (cumulative fecundity across
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FIG. 1. Neighbor-joining tree of 195 Hypericum perforatum genotypes from 50 populations across Europe and North
America. The first number after the country or state name is the population number, followed by the individual number (see
the Appendix for the specific geographic location that corresponds to each population number). Numbers at nodes represent
confidence levels for clades with .49% bootstrap support based on 1000 replicates. At right, colored bars represent latitudinal
ranges encompassing the latitude at which each individual was collected. Please note that the bottom of Fig. 1a (left) continues
at the top of Fig. 1b (right).
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FIG. 1. Continued.

two years, F1,30 5 9.7, P , 0.004), but not in Spain (P
5 0.27). Because of the switch in plant fecundity be-
tween the first two years (2000 and 2001) and the third
(2002), there was no significant clinal pattern in cu-
mulatively three-year fecundity in Washington (P 5
0.88).

Leaf size.—Plants exhibited significant clinal vari-
ation in leaf area in Washington and California (Table
4). Unlike for size and fecundity, however, populations
did not change rank between the northern and southern
common gardens. Instead, individuals from northern
latitude populations had larger leaves than those from



270 JOHN L. MARON ET AL. Ecological Monographs
Vol. 74, No. 2

TABLE 2. Results from ANCOVAs testing for the effect of block (except in Spain), latitude of population origin, region
of population origin, latitude 3 region interaction, and population nested within region on plant size in California (CA),
Sweden (SW), Spain (SP), and Washington (in the third year [2002]; WA).

Source

CA

df MS F P

SW

df MS F P

Block
Latitude
Region
Latitude 3 region
Population(region)
Error

8
1
2
2

28
252

8.4
6.4
0.8
0.2

14.1
47.7

5.5
12.7

0.8
0.2
2.7

0.0001
0.001
0.47
0.81
0.0001

8
1
2
2

23
186

112.9
434

42.1
9.5

258.8
1262

2.1
37.2

1.9
0.4
1.7

0.04
0.0001
0.18
0.64
0.03

southern latitude populations in both gardens (Fig. 6).
When introduced plants were analyzed in isolation, we
found no significant effect of latitude on leaf area, in
either the Washington (F1,30 5 0.4, P 5 0.53) or Cal-
ifornia gardens (F1,20 5 1.9, P 5 0.19).

Other components of variation in size and fecundity
among introduced and native plants

In all gardens, there were significant differences in
size and fecundity among individuals from different
populations, even after variation due to latitude of or-
igin was removed (Tables 2 and 3). This was true not
only for introduced and native populations combined,
but also in analyses using only introduced plants (P ,
0.02 in all gardens). Thus, introduced plants from di-
vergent populations were genetically differentiated,
with this differentiation based both on latitude as well
as other unknown factors that varied between popu-
lations.

Introduced plants from western North American pop-
ulations exhibited almost as much, or in some cases
even greater, phenotypic variation in size and fecundity
as did natives. For example, in Washington, western
North American populations accounted for almost 61%
of the total among population variation in size. In Swe-
den, introduced populations accounted for over 71% of
the total among population variation in fecundity (Ta-
ble 5). For size in California and Sweden, and fecundity
in California and Washington, total phenotypic varia-
tion was relatively equally partitioned among intro-
duced and native populations (Table 5).

Patterns of mortality

Across all populations, mortality in common gardens
in California, Washington, and Sweden was remarkably
low, despite the fact that common gardens contained
plants originating from widely disparate localities. In
California, only 6% (out of 300) of all plants died after
16 months in the field. In Washington, after 29 months
in the field, 4.6% (out of 500) of plants died (excluding
an entire block of 50 plants from all regions that were
overgrown by grasses and killed during late spring of
their second year). In Sweden, 9.7% (out of 248) of
plants died in the 14 months they were in the field. In
all of these gardens, the percentage mortality of indi-

viduals within each population was significantly cor-
related with latitude of population origin (R2 5 0.18,
F1,32 5 7.1, P , 0.01 for California, R2 5 0.16, F1,26

5 4.8, P , 0.037 for Sweden, and R2 5 0.08, F1,48 5
4.3, P , 0.05 for Washington). For these three gardens,
mortality was always lowest within populations that
originated from latitudes closest to that of the common
garden and highest within populations that originated
at more distant latitudes from that of the common gar-
den.

In Spain, mortality was substantially higher than in
the other gardens. Fifty-three percent of all individuals
(of 630) initially planted in the common garden died
throughout the 16 months of the study. Mortality was
high in part due to pathogen attack. Plants were at-
tacked in their second spring by three conspicuous fun-
gal pathogens (Colletotrichum spp., Fusarium spp., and
Gliocladium spp.). Pathogens killed more plants from
western N.A. than from the other two regions (Pearson
chi-squared test, x2 5 24.0, P , 0.001; percentage of
plants from each region killed 5 21%, 22%, and 43%
for Europe, central, and western N.A., respectively).
We compared the average fecundity (from the first year
in 2000) of western North American plants that were
later killed by pathogens in the second year and those
that survived. Plants killed by pathogens in 2001 pro-
duced significantly more seed capsules in 2000 than
did those plants that survived pathogen attack (500 vs.
290 seed capsules for plants that died later or survived,
respectively; ANOVA, F1, 172 5 7.9, P , 0.006). In
contrast, there was no difference in seed capsule pro-
duction in 2000 between European plants that (in 2001)
were killed by pathogens and those that survived to
produce seeds (ANOVA, F1, 170 5 0.08, P 5 0.72).
Thus, there was differential mortality of the most fe-
cund western North American plants, leaving behind
those individuals that produced low numbers of seed
capsules. Since introduced populations in their first
year of reproduction (2000) exhibited significant clinal
variation in fecundity (F1,24 5 6.9, P , 0.01), differ-
ential mortality before reproduction in year two likely
explains why there were no clinal patterns in cumu-
lative fecundity across both years in Spain (Fig. 5).

DISCUSSION

Exotic species often are introduced into diverse re-
cipient communities. To succeed, these species must
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TABLE 2. Extended.

SP

df MS F P

WA

df MS F P

1
2
2

39
260

6.8
22
0.7

68.9
146

3.2
5.2
0.2
3.2

0.085
0.01
0.84
0.0001

8
1
2
2

44
374

37.1
65.8
26.8

6.5
66.8

204

4.6
42.7

8.8
2.1
2.8

0.0001
0.0001
0.0006
0.13
0.0001

cope with different environmental conditions than what
they have experienced in their native site of origin.
How introduced species respond to novel environmen-
tal challenges in their new range remains unclear. We
compared molecular genetic variation and the pheno-
types of native and introduced St. John’s wort in re-
ciprocal common gardens in order to infer the role of
rapid adaptive evolution, phenotypic plasticity, and
founder effects in influencing colonization ability of a
widespread exotic. While common garden experiments
and molecular analysis of genetic variation are increas-
ingly used in studies of exotics, these two approaches
are seldom combined to explore the evolutionary bi-
ology of introduced species.

Differences between native and introduced plants
in size and fecundity

Both plants and marine invertebrates can be larger
in their introduced range than in their native range
(Pritchard 1960, Crawley 1987, Fowler et al. 1996,
Rees and Paynter 1997, Buckley et al. 2003, Grosholtz
and Ruiz 2003). Yet, whether this is due to plasticity
in response to benign recipient environments or evo-
lutionary change brought about by unique selection
pressures in the introduced range is not well under-
stood. Pritchard (1960) was the first to provide limited
evidence that increased stature in an exotic plant could
be due to evolution. Based on measurements from a
limited number of genotypes of St. John’s wort in a
single common garden he asserted ‘‘. . . data obtained
from various populations indicate that those collected
from habitats where the species is a weed are much
taller than those collected from natural or semi-natural
habitats.’’

In our study, we found no evidence to support Prit-
chard’s (1960) assertion. Plants from central N.A. were
neither universally larger nor more fecund that natives
across gardens. Furthermore, western North American
plants were not smaller than those from central N.A.,
which one might expect if increased biocontrol pres-
sure affects allocation of resources to defense, at the
expense of size or fecundity. Although we only esti-
mated the aboveground size of plants in common gar-
dens, in greenhouse experiments we have found no
difference in shoot:root ratios between native and in-

troduced genotypes (S. Elmendorf, J. L. Maron, and
M. Vilà, unpublished manuscript).

In general, evidence for the evolution of increased
size within introduced plant populations has been
mixed. However, comparisons have mostly involved
plants from a limited number of native and introduced
populations grown in only one common garden (Prit-
chard 1960, Blossey and Nötzold 1995, Willis et al.
2000, Siemann and Rogers 2001, but see Willis and
Blossey 1999) or two common gardens placed in rel-
atively close proximity within the introduced range
(Leger and Rice 2003). While these experiments have
been valuable first steps in testing predictions of the
EICA hypothesis, positive results from a single com-
mon garden at best only evaluate the evolutionary po-
tential of introduced genotypes. An unambiguous dem-
onstration of genetically based changes in phenotype
requires reciprocal transplant experiments in the field.
Our results serve to highlight this fact. Results from
one or even two gardens were not necessarily mirrored
across all gardens. For example, there were strong dif-
ferences in fecundity between western North American
plants and European plants in common gardens in
Washington and Sweden, but not in California and
Spain. Had we only established one common garden,
for instance in Washington, we would have come to
the erroneous conclusion that introduced plants had
evolved higher fecundity than natives.

Clinal variation

Although we found no support for the EICA hy-
pothesis, we did find latitudinally based clines in fitness
in almost all gardens. This suggests that both native
and introduced St. John’s wort have adapted to the
broad-scale abiotic conditions experienced across their
current range. Since trait values were significantly dif-
ferent among populations even after the effects of lat-
itude had been statistically removed, at least for native
populations, it is likely that genetic drift and/or other
sources of selection in addition to broad-scale climate
have driven genetic differentiation. In addition to ge-
netically fixed differences in traits, both native and
introduced plants exhibited substantial phenotypic
plasticity, as evidenced by the dramatic change in the
slope of clines in northern vs. southern common gar-
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TABLE 3. Results from ANCOVAs testing for the effect of block (except in Spain), latitude of population origin, region
of population origin, latitude 3 region interaction, and population nested within region on number of seed capsules (or
cumulative seed capsules produced across two or three years in Spain and Washington, respectively) in California (CA),
Sweden (SW), Spain (SP), and Washington (WA).

Source

CA

df SS F P

SW

df SS F P

Block
Latitude
Region
Latitude 3 region
Population(region)
Error

8
1
2
2

28
258

516 613
44 270 556
42 415 934

3 339 885
66 744 214

101 528 193

1.6
18.3

8.9
0.7
6.1

0.11
0.002
0.001
0.50
0.0001

8
1
2
2

23
186

690 764
457 111
882 002

33 557
2 363 376

12 277 293

1.3
4.3
4.2
0.16
1.6

0.25
0.05
0.03
0.85
0.057

dens. Although we cannot completely rule out the pos-
sibility that maternal effects influenced our results, this
seems unlikely. We found no significant difference in
seed mass based on region of origin, nor was there a
significant relationship between latitude of origin and
seed mass within or among regions (J. L. Maron, un-
published). Moreover, plants were measured after at
least a year in the field, a time period sufficient for any
initial maternal effect to diminish.

For natives, genetically based clinal variation in size
and fecundity is not surprising. St. John’s wort occurs
across a large latitudinal range in Europe and latitudinal
or elevational clines are often found in species that
occur over steep environmental gradients (Turreson
1930, Clausen et al. 1940, Neuffer and Hurka 1986,
Galen et al. 1991, Winn and Gross 1993, Jonas and
Geber 1999). Clinal variation among introduced pop-
ulations, however, is particularly noteworthy because
it may indicate that exotics are rapidly evolving ad-
aptations to conditions in recipient communities. In-
deed, the study of clinal variation in adaptive traits has
been a classic approach to understanding how organ-
isms adapt to their environment (Clausen et al. 1940,
Endler 1977). Although other studies have shown that
exotic plant populations can be genetically differenti-
ated with respect to particular traits (Jain and Martins
1979, Potvin 1986, Warwick 1990, Rice and Mack
1991, Linde et al. 2001), we know of no other study
that has documented both broad-scale differentiation
in adaptive traits among exotic populations based on
latitude, and strong convergence between introduced
and native plant populations in geographic clines for
fitness.

For introduced plants, several alternative mecha-
nisms could produce clines in traits such as those we
have observed. Clines could evolve as a result of adap-
tive radiation from a limited number of genotypes that
were introduced into North America. Alternatively,
multiple introductions could result in genetically di-
verse populations with sufficient variation on which
selection could act. In this instance, there could be
genetically based adaptation among the diverse geno-
types that were originally introduced or selection could
simply filter out genotypes not already adapted to con-
ditions in the recipient community. If filtering has taken

place, there is no adaptive evolution. Rather, surviving
plants are those that are already pre-adapted to the cli-
matic conditions in recipient communities. Since these
mechanisms have different implications regarding the
importance and mode of adaptive evolution, distin-
guishing among them is essential if we are to fully
understand the role of rapid evolution in the invasion
process.

Our genetic data suggest that there have been mul-
tiple introductions of St. John’s wort into North Amer-
ica. Plants sorted into several well-supported clades
(Fig. 1), which would not be the case if there had been
a massive genetic bottleneck caused by only a few
founding individuals. Thus, unlike many exotic plants
that show little genetic differentiation across geograph-
ic gradients (Baker 1974, Morgan and Marshall 1978,
Barrett and Richardson 1986, Warwick and Black 1986,
Rapson and Wilson 1988, Wang et al. 1995, Williams
et al. 1995), we found substantial molecular genetic
variation among introduced St. John’s wort. Most of
this variation was partitioned among populations; only
10% of the total variation in AFLP haplotypes was due
to region of population origin (i.e., introduced vs. na-
tive). This is consistent with what has been found for
other apomictic or highly selfing plants, where sub-
stantial genetic variation is often preserved among ge-
netically differentiated populations (Widén et al. 1994,
Wang et al. 1995, Bergelson et al. 1998, Miyashita et
al. 1999, Auge et al. 2001).

Not only were introduced plants genetically diverse,
but they were phenotypically variable as well. Intro-
duced populations expressed as much, or in some cases
more phenotypic variation in size and fecundity within
any given common garden than did individuals from
native populations, despite the fact that introduced pop-
ulations spanned a narrower latitudinal range than did
the natives.

Given that there have been multiple introductions of
St. John’s wort, are clines among introduced popula-
tions the result of adaptive evolution or entirely the
result of plants having been introduced into areas that
are climatologically similar from whence they came?
Several lines of evidence suggest that St. John’s wort
did not universally establish at latitudes similar to their
European site of origin. We found multiple cases in
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TABLE 3. Extended.

SP

df SS F P

WA (cumulative across first two years)

df SS F P

WA (cumulative across three years)

df SS F P

1
2
2

39
250

1 383 719
2 048 447

531 811
15 933 275
37 226 630

3.1
2.4
0.57
2.7

0.08
0.10
0.57
0.0001

9
1
2
2

44
406

98 751 567
15 716 958
15 673 251
10 034 411
89 652 986

319 442 031

13.8
7.6
3.8
2.4
2.6

0.0001
0.008
0.03
0.1
0.0001

9
1
2
1

44
404

216 864 022
21 745 730
36 039 543
19 934 584

232 111 881
749 315 733

12.8
4.1
3.4
1.8
2.8

0.0001
0.05
0.04
0.17
0.0001

FIG. 2. (A, B) Mean size (number of shoots) produced by 14-month-old H. perforatum plants in the Sweden common
garden, and (C, D) mean size (volume) of 28-month-old plants in the Washington common garden (open circles, central
North American populations; filled circles, western North American populations; triangles, European populations). Lines
through points indicate significant effect of latitude. Arrows indicate the latitudes of the common gardens.
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FIG. 3. (A, B) Mean size (volume) of 14-month-old H. perforatum plants in the California common garden, and (C, D)
mean size (volume) of 12-month-old plants in the Spain common garden (open circles, central North American populations;
filled circles, western North American populations; triangles, European populations). Lines through points indicate significant
effect of latitude. Arrows indicate the latitudes of the common gardens. Note that one point from central North America is
totally obscured by a western North American data point.

which particular introduced genotypes share as their
closest native relative individuals originating from dif-
ferent latitudes than themselves (Fig. 1). For example,
individuals from California populations 1 and 2, from
latitudes 38.558 and 38.668 N, respectively, have as
their closest European relative plants from France pop-
ulation 7, which originate from latitude 44.18 N. Plants
from California populations 3 and 4 (latitudes 398 and
39.258 N, respectively) are most closely related to
plants from Germany population 15, which were from
latitude 50.738 N. Furthermore, some clades contain
plants from both western and central North American

populations, implying that plants from one portion of
North America were founded by plants from another
latitudinally distinct portion of North America, or that
European genotypes were simultaneously introduced
into very different recipient locales.

Patterns of leaf size variation among native and in-
troduced plants also support the notion that plants in-
troduced into particular latitudes did not necessarily
originate from similar latitudes. For natives, leaf size
is diagnostic for whether plants reside in northern or
southern Europe. In native communities, plants from
northern Europe have wider leaves than plants from
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FIG. 4. (A, B) Mean number of seed capsules produced by 17-month-old H. perforatum plants in the Sweden common
garden, and (C) mean cumulative number of seed capsules produced across their first and second years by plants in the
Washington common garden (open circles, central North American populations; filled circles, western North American
populations; triangles, European populations). (D, E) Mean number of seed capsules produced by 31-month-old plants in the
Washington common garden. Lines through points indicate significant effect of latitude. Arrows indicate the latitudes of the
common gardens.

the south, and in fact, northern and southern European
plants are treated as different varieties (var. perforatum
in the north and var. angustifolia and var. microphyllum
in the south; Robson 1968). In contrast to these clear

differences in leaf size among European plants (both
in natural populations and in our common gardens),
western North American plants did not exhibit clinal
variation in leaf size in common gardens. Because this
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FIG. 5. (A, B) Mean number of seed capsules produced by 17-month-old H. perforatum plants in the California common
garden, and (C, D) mean cumulative number of seed capsules produced across two years by plants in the Spain common
garden (open circles, central North American populations; filled circles, western North American populations; triangles,
European populations). Lines through points indicate significant effect of latitude. Arrows indicate the latitudes of the common
gardens.

TABLE 4. Results from ANCOVA testing for the effect of block, latitude of population origin,
region of population origin, latitude 3 region interaction, and population nested within region
on leaf area in Washington (WA), and California (CA).

Source

WA

df SS F P

CA

df SS F P

Block
Latitude
Region
Latitude 3 region
Population(region)
Error

8
1
2
2

44
363

1.6
5.5
1.9
6.1

57.3
89.5

0.79
4.1
0.73
2.37
5.28

0.61
0.05
0.49
0.10
0.001

8
1
2
2

28
255

2.2
3.8
3.8
1.62

23.7
44.8

1.3
4.4
2.3
0.96
4.26

0.25
0.04
0.12
0.39
0.0001
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FIG. 6. (A, B) Mean leaf area of H. perforatum plants in the Washington common garden, and (C, D) mean leaf area of
plants in the California common garden (open circles, central North American populations; solid circles, western North
American populations; triangles, European populations). Lines through points indicate significant effect of latitude. Arrows
indicate the latitudes of the common gardens.

TABLE 5. Percentage of total phenotypic variation in size
or fecundity partitioned among European and western
North American (N.A.) populations in common gardens in
California (CA), Sweden (SW), and Washington (WA).

Population CA SW WA

Size
Native
Western N.A.

51.5
48.5

52.8
47.2

39.3
60.7

Fecundity
Native
Western N.A.

53.5
46.5

29.6
70.4

40.6
59.4

trait appears not to have yet responded to conditions
in the introduced range, leaf size may be a reasonable
proxy for the latitude that western North American
plants originated from in Europe. Since some large-
leaved populations were found at southern latitudes in
western N.A., it appears that southern latitude popu-
lations in western N.A. likely originated from more
northern latitudes in Europe.

Taken together, genetic and common garden data
suggest the following scenario. Multiple introductions
of St. John’s wort into North America provided suffi-
cient phenotypic (and underlying genetic) variation on
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which selection could act. Some introduced genotypes
undoubtedly originated from regions that shared a sim-
ilar abiotic regime as that experienced in their recipient
community, and therefore were pre-adapted to partic-
ular conditions experienced in North America. How-
ever, given the patterns discussed above, it also seems
likely that many populations were founded by individ-
uals that were not pre-adapted to the latitude (and hence
climatic conditions) of introduction. Plants within these
populations appear to be evolving in response to cur-
rent conditions experienced in their recipient com-
munity. Since the earliest arriving genotypes of St.
John’s wort have only been in North America for ;150
years (and likely less time in California), or perhaps
12–15 plant generations, this evolutionary adaptation
is occurring quite rapidly.

Concluding remarks

Exotic plant introductions represent a grand, if un-
fortunate, experiment in evolutionary ecology. This
was first recognized over 35 years ago by evolutionary
biologists who were among the first to explore the evo-
lutionary potential of introduced plants (Baker and
Stebbins 1965, Baker 1974). However, this evolution-
ary perspective has mostly been ignored in the bur-
geoning ecological literature on invasion biology
(Parker et al. 2003).

Our results generally support the contention that in-
troduced plants can undergo contemporary evolution
(Bone and Farres 2001), and that adaptive evolution
may be one of several key mechanisms enabling exotics
to succeed in recipient communities. Hopefully, in-
creasing awareness of the importance of contemporary
evolution in the ecology of invasions will catalyze a
greater fusion of ecological and evolutionary perspec-
tives in future studies of exotic plants (Thompson 1998,
Bone and Farres 2001, Lee 2002). Melding of these
often disparate approaches offers tremendous potential
to crack the mystery of why exotic species are able to
attain such staggeringly high densities in recipient
communities, while their native counterparts virtually
never do.
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APPENDIX

A table of the locations of seed source populations is available at ESA’s Electronic Data Archive: Ecological Archives
M074-005-A1.


